1195 lines
58 KiB
Zig
1195 lines
58 KiB
Zig
const std = @import("std");
|
|
const wasm = @import("wasm.zig");
|
|
const Parser = @import("Parser.zig");
|
|
const IR = @import("ir.zig");
|
|
const External = @import("external.zig");
|
|
const Allocator = std.mem.Allocator;
|
|
const AllocationError = error{OutOfMemory};
|
|
|
|
pub const Memory = struct {
|
|
min: u32,
|
|
max: ?u32,
|
|
};
|
|
|
|
pub const Valtype = union(enum) {
|
|
val: std.wasm.Valtype,
|
|
ref: std.wasm.RefType,
|
|
};
|
|
|
|
pub const Functype = struct {
|
|
parameters: []Valtype,
|
|
returns: []Valtype,
|
|
|
|
pub fn deinit(self: Functype, allocator: Allocator) void {
|
|
allocator.free(self.parameters);
|
|
allocator.free(self.returns);
|
|
}
|
|
};
|
|
pub const Function = struct { func_type: Functype, typ: union(enum) {
|
|
internal: struct {
|
|
locals: []Valtype,
|
|
ir: IR,
|
|
},
|
|
external: u32
|
|
} };
|
|
|
|
pub const ExportFunction = enum {
|
|
init,
|
|
deinit,
|
|
logErr,
|
|
logWarn,
|
|
logInfo,
|
|
logDebug,
|
|
};
|
|
pub const Exports = struct {
|
|
init: ?u32 = null,
|
|
deinit: ?u32 = null,
|
|
logErr: ?u32 = null,
|
|
logWarn: ?u32 = null,
|
|
logInfo: ?u32 = null,
|
|
logDebug: ?u32 = null,
|
|
};
|
|
comptime {
|
|
std.debug.assert(@typeInfo(ExportFunction).@"enum".fields.len == @typeInfo(Exports).@"struct".fields.len);
|
|
}
|
|
|
|
pub const Module = struct {
|
|
memory: Memory,
|
|
functions: []Function,
|
|
exports: Exports,
|
|
exported_memory: u32,
|
|
data: []const u8,
|
|
tables: []Parser.Tabletype,
|
|
elems: [][]u32,
|
|
|
|
pub fn deinit(self: Module, allocator: Allocator) void {
|
|
for (self.functions) |f| {
|
|
switch (f.typ) {
|
|
.internal => {
|
|
allocator.free(f.typ.internal.ir.opcodes);
|
|
allocator.free(f.typ.internal.ir.indices);
|
|
allocator.free(f.typ.internal.ir.select_valtypes);
|
|
allocator.free(f.typ.internal.locals);
|
|
},
|
|
.external => {}
|
|
}
|
|
f.func_type.deinit(allocator);
|
|
}
|
|
allocator.free(self.functions);
|
|
allocator.free(self.data);
|
|
allocator.free(self.tables);
|
|
for (self.elems) |elem| {
|
|
allocator.free(elem);
|
|
}
|
|
allocator.free(self.elems);
|
|
}
|
|
};
|
|
|
|
pub const CallFrame = struct {
|
|
program_counter: usize,
|
|
code: IR,
|
|
locals: []Value,
|
|
};
|
|
|
|
pub const Value = union(enum) {
|
|
i32: i32,
|
|
i64: i64,
|
|
f32: f32,
|
|
f64: f64,
|
|
ref: struct {
|
|
type: ?std.wasm.RefType,
|
|
val: u32,
|
|
}
|
|
|
|
};
|
|
|
|
pub const Runtime = struct {
|
|
module: Module,
|
|
stack: std.ArrayList(Value),
|
|
memory: []u8,
|
|
global_runtime: *wasm.GlobalRuntime,
|
|
externalFuncs: std.AutoHashMapUnmanaged(u32, ExternalFuncWrapper),
|
|
const ExternalFuncWrapper = struct {
|
|
func: *const fn (self: *Runtime, params: []Value) ?Value,
|
|
};
|
|
|
|
|
|
pub fn init(allocator: Allocator, module: Module, global_runtime: *wasm.GlobalRuntime) !Runtime {
|
|
// if memory max is not set the memory is allowed to grow but it is not supported at the moment
|
|
const max = module.memory.max orelse module.memory.min;
|
|
const memory = try allocator.alloc(u8, max);
|
|
@memset(memory, 0);
|
|
@memcpy(memory[0..module.data.len], module.data);
|
|
var externalFuncs: std.AutoHashMapUnmanaged(u32, ExternalFuncWrapper) = .{};
|
|
if (module.exports.logDebug != null){
|
|
try externalFuncs.put(allocator, module.exports.logDebug.?, .{.func = External.logDebug});
|
|
}
|
|
if (module.exports.logInfo != null){
|
|
try externalFuncs.put(allocator, module.exports.logInfo.?, .{.func = External.logInfo});
|
|
}
|
|
if (module.exports.logWarn != null){
|
|
try externalFuncs.put(allocator, module.exports.logWarn.?, .{.func = External.logWarn});
|
|
}
|
|
if (module.exports.logErr != null){
|
|
try externalFuncs.put(allocator, module.exports.logErr.?, .{.func = External.logErr});
|
|
}
|
|
return Runtime{
|
|
.externalFuncs = externalFuncs,
|
|
.module = module,
|
|
.stack = try std.ArrayList(Value).initCapacity(allocator, 10),
|
|
.memory = memory,
|
|
.global_runtime = global_runtime,
|
|
};
|
|
}
|
|
|
|
pub fn deinit(self: *Runtime, allocator: Allocator) void {
|
|
self.stack.deinit(allocator);
|
|
self.global_runtime.deinit();
|
|
self.module.deinit(allocator);
|
|
self.externalFuncs.deinit(allocator);
|
|
allocator.free(self.memory);
|
|
}
|
|
|
|
pub fn executeFrame(self: *Runtime, allocator: Allocator, frame: *CallFrame) !void {
|
|
loop: while (frame.program_counter < frame.code.opcodes.len) {
|
|
const opcode: IR.Opcode = frame.code.opcodes[frame.program_counter];
|
|
const index = frame.code.indices[frame.program_counter];
|
|
// std.debug.print("Executing at {X} {any} {X}\n", .{frame.program_counter, opcode, if (opcode == IR.Opcode.call) @as(i64, @intCast(index.u32)) else -1});
|
|
switch (opcode) {
|
|
.@"unreachable" => {
|
|
std.debug.panic("Reached unreachable statement at IR counter {any}\n", .{frame.program_counter});
|
|
},
|
|
.nop => {},
|
|
.br => {
|
|
frame.program_counter = index.u32;
|
|
continue;
|
|
},
|
|
.br_if => {
|
|
if (self.stack.pop().?.i32 != 0) {
|
|
frame.program_counter = index.u32;
|
|
continue;
|
|
}
|
|
},
|
|
.br_table => {
|
|
const idx = self.stack.pop().?.i32;
|
|
if (idx < index.indirect.y){
|
|
frame.program_counter = frame.code.br_table_vectors[index.indirect.x + @as(u32, @intCast(idx))];
|
|
} else {
|
|
frame.program_counter = frame.code.br_table_vectors[index.indirect.y];
|
|
}
|
|
continue;
|
|
},
|
|
.@"return" => break :loop,
|
|
.call => {
|
|
var parameters = std.ArrayList(Value).empty;
|
|
defer parameters.deinit(allocator);
|
|
for (self.module.functions[index.u32].func_type.parameters) |_| {
|
|
try parameters.append(allocator, self.stack.pop().?);
|
|
}
|
|
try self.call(allocator, index.u32, parameters.items);
|
|
},
|
|
.call_indirect => {
|
|
if (self.module.tables[index.indirect.x].et != std.wasm.RefType.funcref) {
|
|
std.debug.panic("Table at index {any} is not a `funcref` table\n", .{index.indirect.x});
|
|
}
|
|
const j: u32 = @intCast(self.stack.pop().?.i32);
|
|
const funcIdx = self.module.elems[index.indirect.x][j];
|
|
var parameters = std.ArrayList(Value).empty;
|
|
defer parameters.deinit(allocator);
|
|
for (self.module.functions[funcIdx].func_type.parameters) |_| {
|
|
try parameters.append(allocator, self.stack.pop().?);
|
|
}
|
|
try self.call(allocator, funcIdx, parameters.items);
|
|
},
|
|
|
|
.refnull => {
|
|
try self.stack.append(allocator, .{.ref = .{.type = null, .val = 0}});
|
|
},
|
|
.refisnull => {
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(@as(i1, @bitCast(self.stack.pop().?.ref.type == null))) });
|
|
},
|
|
.reffunc => {
|
|
try self.stack.append(allocator, .{.ref = .{.type = std.wasm.RefType.funcref, .val = index.u32}});
|
|
},
|
|
|
|
.drop => {
|
|
_ = self.stack.pop();
|
|
},
|
|
.select => {
|
|
const c = self.stack.pop().?.i32;
|
|
const val2 = self.stack.pop().?;
|
|
const val1 = self.stack.pop().?;
|
|
if (c != 0) {
|
|
try self.stack.append(allocator, val1);
|
|
} else {
|
|
try self.stack.append(allocator, val2);
|
|
}
|
|
},
|
|
.select_with_values => @panic("UNIMPLEMENTED"),
|
|
|
|
.localget => try self.stack.append(allocator, frame.locals[index.u32]),
|
|
.localset => frame.locals[index.u32] = self.stack.pop().?,
|
|
.localtee => frame.locals[index.u32] = self.stack.items[self.stack.items.len - 1],
|
|
.globalget => try self.stack.append(allocator, self.global_runtime.getGlobal(index.u32)),
|
|
.globalset => try self.global_runtime.updateGlobal(index.u32, self.stack.pop().?),
|
|
|
|
.tableget => @panic("UNIMPLEMENTED"),
|
|
.tableset => @panic("UNIMPLEMENTED"),
|
|
.tableinit => @panic("UNIMPLEMENTED"),
|
|
.elemdrop => @panic("UNIMPLEMENTED"),
|
|
.tablecopy => @panic("UNIMPLEMENTED"),
|
|
.tablegrow => @panic("UNIMPLEMENTED"),
|
|
.tablesize => @panic("UNIMPLEMENTED"),
|
|
.tablefill => @panic("UNIMPLEMENTED"),
|
|
|
|
// TODO(ernesto): This code is repeated...
|
|
.i32_load => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i32);
|
|
try self.stack.append(allocator, .{ .i32 = std.mem.littleToNative(i32, std.mem.bytesAsValue(i32, self.memory[start..end]).*) });
|
|
},
|
|
.i64_load => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i64);
|
|
try self.stack.append(allocator, .{ .i64 = std.mem.littleToNative(i64, std.mem.bytesAsValue(i64, self.memory[start..end]).*) });
|
|
},
|
|
.f32_load => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(f32);
|
|
try self.stack.append(allocator, .{ .f32 = std.mem.littleToNative(f32, std.mem.bytesAsValue(f32, self.memory[start..end]).*) });
|
|
},
|
|
.f64_load => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(f64);
|
|
try self.stack.append(allocator, .{ .f64 = std.mem.littleToNative(f64, std.mem.bytesAsValue(f64, self.memory[start..end]).*) });
|
|
},
|
|
.i32_load8_s => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i8);
|
|
const raw_value = std.mem.readInt(i8, @as(*const [1]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(@as(i32, raw_value)) });
|
|
},
|
|
.i32_load8_u => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(u8);
|
|
const raw_value = std.mem.readInt(u8, @as(*const [1]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(@as(u32, raw_value)) });
|
|
},
|
|
.i32_load16_s => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i16);
|
|
const raw_value = std.mem.readInt(i16, @as(*const [2]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(@as(i32, raw_value)) });
|
|
},
|
|
.i32_load16_u => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(u16);
|
|
const raw_value = std.mem.readInt(u16, @as(*const [2]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(@as(u32, raw_value)) });
|
|
},
|
|
.i64_load8_s => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i8);
|
|
const raw_value = std.mem.readInt(i8, @as(*const [1]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(i64, raw_value)) });
|
|
},
|
|
.i64_load8_u => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(u8);
|
|
const raw_value = std.mem.readInt(u8, @as(*const [1]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(u64, raw_value)) });
|
|
},
|
|
.i64_load16_s => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i16);
|
|
const raw_value = std.mem.readInt(i16, @as(*const [2]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(i64, raw_value)) });
|
|
},
|
|
.i64_load16_u => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(u16);
|
|
const raw_value = std.mem.readInt(u16, @as(*const [2]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(u64, raw_value)) });
|
|
},
|
|
.i64_load32_s => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(i32);
|
|
const raw_value = std.mem.readInt(i32, @as(*const [4]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(i64, raw_value)) });
|
|
},
|
|
.i64_load32_u => {
|
|
const start = index.memarg.offset + @as(u32, @intCast(self.stack.pop().?.i32));
|
|
const end = start + @sizeOf(u32);
|
|
const raw_value = std.mem.readInt(u32, @as(*const [4]u8, @ptrCast(self.memory[start..end])), std.builtin.Endian.little);
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(@as(u64, raw_value)) });
|
|
},
|
|
.i32_store => {
|
|
const val = std.mem.nativeToLittle(i32, self.stack.pop().?.i32);
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u32);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i64_store => {
|
|
const val = std.mem.nativeToLittle(i64, self.stack.pop().?.i64);
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u64);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.f32_store => {
|
|
const val = std.mem.nativeToLittle(i32, @bitCast(self.stack.pop().?.f32));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u32);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.f64_store => {
|
|
const val = std.mem.nativeToLittle(i64, @bitCast(self.stack.pop().?.f64));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u64);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i32_store8 => {
|
|
const val = std.mem.nativeToLittle(i8, @as(i8, @truncate(self.stack.pop().?.i32)));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u8);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i32_store16 => {
|
|
const val = std.mem.nativeToLittle(i16, @as(i16, @truncate(self.stack.pop().?.i32)));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u16);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i64_store8 => {
|
|
const val = std.mem.nativeToLittle(i8, @as(i8, @truncate(self.stack.pop().?.i64)));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u8);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i64_store16 => {
|
|
const val = std.mem.nativeToLittle(i16, @as(i16, @truncate(self.stack.pop().?.i64)));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u16);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
.i64_store32 => {
|
|
const val = std.mem.nativeToLittle(i32, @as(i32, @truncate(self.stack.pop().?.i64)));
|
|
const offsetVal = self.stack.pop().?.i32;
|
|
if (offsetVal < 0) {
|
|
std.debug.panic("offsetVal is negative (val: {any})\n", .{offsetVal});
|
|
}
|
|
const offset: u64 = @intCast(offsetVal);
|
|
const start: usize = @intCast(@as(u64, index.memarg.offset) + offset);
|
|
const end = start + @sizeOf(u32);
|
|
@memcpy(self.memory[start..end], std.mem.asBytes(&val));
|
|
},
|
|
|
|
.memorysize => {
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(self.memory.len / Parser.PAGE_SIZE) });
|
|
},
|
|
.memorygrow => {
|
|
const newPages = self.stack.pop().?.i32;
|
|
const newSize = (self.memory.len / Parser.PAGE_SIZE) + @as(usize, @intCast(newPages));
|
|
if (self.module.memory.max != null and newSize > self.module.memory.max.?){
|
|
std.debug.panic("Mod failed to stay within memory range\n", .{});
|
|
}
|
|
const oldPages: i32 = @intCast(self.memory.len / Parser.PAGE_SIZE);
|
|
self.memory = try allocator.realloc(self.memory, newSize * Parser.PAGE_SIZE);
|
|
try self.stack.append(allocator, .{ .i32 = oldPages });
|
|
},
|
|
// TODO(luccie): We need passive memory for this
|
|
.memoryinit => @panic("UNIMPLEMENTED"),
|
|
.datadrop => @panic("UNIMPLEMENTED"),
|
|
.memorycopy => {
|
|
const bytes: usize = @intCast(self.stack.pop().?.i32);
|
|
const source: usize = @intCast(self.stack.pop().?.i32);
|
|
const dest: usize = @intCast(self.stack.pop().?.i32);
|
|
@memcpy(self.memory[dest .. dest + bytes], self.memory[source .. source + bytes]);
|
|
},
|
|
.memoryfill => {
|
|
const bytes: usize = @intCast(self.stack.pop().?.i32);
|
|
const val: u8 = @as(u8, @intCast(self.stack.pop().?.i32));
|
|
const dest: usize = @intCast(self.stack.pop().?.i32);
|
|
@memset(self.memory[dest .. dest + bytes], val);
|
|
},
|
|
|
|
.i32_const => {
|
|
try self.stack.append(allocator, .{ .i32 = frame.code.indices[frame.program_counter].i32 });
|
|
},
|
|
.i64_const => {
|
|
try self.stack.append(allocator, .{ .i64 = frame.code.indices[frame.program_counter].i64 });
|
|
},
|
|
.f32_const => {
|
|
try self.stack.append(allocator, .{ .f32 = frame.code.indices[frame.program_counter].f32 });
|
|
},
|
|
.f64_const => {
|
|
try self.stack.append(allocator, .{ .f64 = frame.code.indices[frame.program_counter].f64 });
|
|
},
|
|
|
|
.i32_eqz => {
|
|
const val = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(val == 0) });
|
|
},
|
|
.i32_eq => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a == b) });
|
|
},
|
|
.i32_ne => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a != b) });
|
|
},
|
|
.i32_lt_s => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.i32_lt_u => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.i32_gt_s => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.i32_gt_u => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.i32_le_s => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.i32_le_u => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.i32_ge_s => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
.i32_ge_u => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
|
|
.i64_eqz => {
|
|
const val = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(val == 0) });
|
|
},
|
|
.i64_eq => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a == b) });
|
|
},
|
|
.i64_ne => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a != b) });
|
|
},
|
|
.i64_lt_s => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.i64_lt_u => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.i64_gt_s => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.i64_gt_u => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.i64_le_s => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.i64_le_u => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.i64_ge_s => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
.i64_ge_u => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
|
|
.f32_eq => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a == b) });
|
|
},
|
|
.f32_ne => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a != b) });
|
|
},
|
|
.f32_lt => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.f32_gt => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.f32_le => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.f32_ge => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
|
|
.f64_eq => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a == b) });
|
|
},
|
|
.f64_ne => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(a != b) });
|
|
},
|
|
.f64_lt => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b < a) });
|
|
},
|
|
.f64_gt => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b > a) });
|
|
},
|
|
.f64_le => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b <= a) });
|
|
},
|
|
.f64_ge => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .i32 = @intFromBool(b >= a) });
|
|
},
|
|
|
|
.i32_clz => {
|
|
try self.stack.append(allocator, .{ .i32 = @clz(self.stack.pop().?.i32) });
|
|
},
|
|
.i32_ctz => {
|
|
try self.stack.append(allocator, .{ .i32 = @ctz(self.stack.pop().?.i32) });
|
|
},
|
|
.i32_popcnt => {
|
|
try self.stack.append(allocator, .{ .i32 = @popCount(self.stack.pop().?.i32) });
|
|
},
|
|
.i32_add => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = a + b });
|
|
},
|
|
.i32_sub => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = b - a });
|
|
},
|
|
.i32_and => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = a & b });
|
|
},
|
|
.i32_mul => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = a * b });
|
|
},
|
|
.i32_div_s => {
|
|
const a_signed = self.stack.pop().?.i32;
|
|
const b_signed = self.stack.pop().?.i32;
|
|
if (a_signed == 0){
|
|
std.debug.panic("Division by 0 error!\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i32 = @divTrunc(b_signed, a_signed) });
|
|
},
|
|
.i32_div_u => {
|
|
const a_unsigned = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b_unsigned = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
if (a_unsigned == 0){
|
|
std.debug.panic("Division by 0 error!\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(b_unsigned / a_unsigned) });
|
|
},
|
|
.i32_rem_s => {
|
|
const divisor = self.stack.pop().?.i32;
|
|
const dividend = self.stack.pop().?.i32;
|
|
if (divisor == 0) {
|
|
std.debug.panic("Divide by 0\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(dividend - divisor * @divTrunc(dividend, divisor)) });
|
|
},
|
|
.i32_rem_u => {
|
|
const divisor = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const dividend = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
if (divisor == 0) {
|
|
std.debug.panic("Divide by 0\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(dividend - divisor * @divTrunc(dividend, divisor)) });
|
|
},
|
|
.i32_or => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = a | b });
|
|
},
|
|
.i32_xor => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = a ^ b });
|
|
},
|
|
.i32_shl => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = (b << @as(u5, @intCast(a))) });
|
|
},
|
|
.i32_shr_s => {
|
|
const a = self.stack.pop().?.i32;
|
|
const b = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = (b >> @as(u5, @intCast(a))) });
|
|
},
|
|
.i32_shr_u => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(b >> @as(u5, @intCast(a))) });
|
|
},
|
|
.i32_rotl => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(std.math.rotl(u32, b, a)) });
|
|
},
|
|
.i32_rotr => {
|
|
const a = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
const b = @as(u32, @bitCast(self.stack.pop().?.i32));
|
|
try self.stack.append(allocator, .{ .i32 = @intCast(std.math.rotr(u32, b, a)) });
|
|
},
|
|
|
|
.i64_clz => {
|
|
try self.stack.append(allocator, .{ .i64 = @clz(self.stack.pop().?.i64) });
|
|
},
|
|
.i64_ctz => {
|
|
try self.stack.append(allocator, .{ .i64 = @ctz(self.stack.pop().?.i64) });
|
|
},
|
|
.i64_popcnt => {
|
|
try self.stack.append(allocator, .{ .i64 = @popCount(self.stack.pop().?.i64) });
|
|
},
|
|
.i64_add => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = a + b });
|
|
},
|
|
.i64_sub => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = b - a });
|
|
},
|
|
.i64_mul => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = a * b });
|
|
},
|
|
.i64_div_s => {
|
|
const a_signed = self.stack.pop().?.i64;
|
|
const b_signed = self.stack.pop().?.i64;
|
|
if (a_signed == 0){
|
|
std.debug.panic("Division by 0 error!\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i64 = @divTrunc(b_signed, a_signed) });
|
|
},
|
|
.i64_div_u => {
|
|
const a_unsigned = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b_unsigned = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
if (a_unsigned == 0){
|
|
std.debug.panic("Division by 0 error!\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(b_unsigned / a_unsigned) });
|
|
},
|
|
.i64_rem_s => {
|
|
const divisor = self.stack.pop().?.i64;
|
|
const dividend = self.stack.pop().?.i64;
|
|
if (divisor == 0) {
|
|
std.debug.panic("Divide by 0\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(dividend - divisor * @divTrunc(dividend, divisor)) });
|
|
},
|
|
.i64_rem_u => {
|
|
const divisor = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const dividend = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
if (divisor == 0) {
|
|
std.debug.panic("Divide by 0\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(dividend - divisor * @divTrunc(dividend, divisor)) });
|
|
},
|
|
.i64_and => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = a & b });
|
|
},
|
|
.i64_or => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = a | b });
|
|
},
|
|
.i64_xor => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = a ^ b });
|
|
},
|
|
.i64_shl => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(b << @as(u6, @intCast(a))) });
|
|
},
|
|
.i64_shr_s => {
|
|
const a = self.stack.pop().?.i64;
|
|
const b = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(b >> @as(u6, @intCast(a))) });
|
|
},
|
|
.i64_shr_u => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(b >> @as(u6, @intCast(a))) });
|
|
},
|
|
.i64_rotl => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(std.math.rotl(u64, b, a)) });
|
|
},
|
|
.i64_rotr => {
|
|
const a = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
const b = @as(u64, @bitCast(self.stack.pop().?.i64));
|
|
try self.stack.append(allocator, .{ .i64 = @intCast(std.math.rotr(u64, b, a)) });
|
|
},
|
|
|
|
// The value 0x7FFFFFFF here represents the bitmask that masks everything except for the IEEE754 32 bit precision sign bit
|
|
.f32_abs => {
|
|
try self.stack.append(allocator, .{ .f32 = @bitCast(@as(u32, @bitCast(self.stack.pop().?.f32)) & 0x7FFFFFFF) });
|
|
},
|
|
// The value 0x80000000 here represents the bitmask that only masks the IEEE754 32 bit precision sign bit
|
|
.f32_neg => {
|
|
try self.stack.append(allocator, .{ .f32 = @bitCast(@as(u32, @bitCast(self.stack.pop().?.f32)) ^ 0x80000000) });
|
|
},
|
|
.f32_ceil => {
|
|
try self.stack.append(allocator, .{ .f32 = @ceil(self.stack.pop().?.f32) });
|
|
},
|
|
.f32_floor => {
|
|
try self.stack.append(allocator, .{ .f32 = @floor(self.stack.pop().?.f32) });
|
|
},
|
|
.f32_trunc => {
|
|
try self.stack.append(allocator, .{ .f32 = @trunc(self.stack.pop().?.f32) });
|
|
},
|
|
.f32_nearest => {
|
|
try self.stack.append(allocator, .{ .f32 = @round(self.stack.pop().?.f32) });
|
|
},
|
|
.f32_sqrt => {
|
|
try self.stack.append(allocator, .{ .f32 = @sqrt(self.stack.pop().?.f32) });
|
|
},
|
|
.f32_add => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = a + b });
|
|
},
|
|
.f32_sub => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = b - a });
|
|
},
|
|
.f32_mul => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = a * b });
|
|
},
|
|
.f32_div => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
if (a == 0){
|
|
std.debug.panic("[ERROR]: Division by 0\n", .{});
|
|
}
|
|
try self.stack.append(allocator, .{ .f32 = b / a });
|
|
},
|
|
.f32_min => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = @min(a, b) });
|
|
},
|
|
.f32_max => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = @max(a, b) });
|
|
},
|
|
// See f32_abs and f32_neg for explainations behind these magic values
|
|
.f32_copysign => {
|
|
const a = self.stack.pop().?.f32;
|
|
const b = self.stack.pop().?.f32;
|
|
try self.stack.append(allocator, .{ .f32 = @bitCast((@as(u32, @bitCast(b)) & 0x7FFFFFFF) | (@as(u32, @bitCast(a)) & 0x80000000)) });
|
|
},
|
|
|
|
// The value 0x7FFFFFFFFFFFFFFF here represents the bitmask that masks everything except for the IEEE754 64 bit precision sign bit
|
|
.f64_abs => {
|
|
try self.stack.append(allocator, .{ .f64 = @bitCast(@as(u64, @bitCast(self.stack.pop().?.f64)) & 0x7FFFFFFFFFFFFFFF) });
|
|
},
|
|
// The value 0x8000000000000000 here represents the bitmask that only masks the IEEE754 64 bit precision sign bit
|
|
.f64_neg => {
|
|
try self.stack.append(allocator, .{ .f64 = @bitCast(@as(u64, @bitCast(self.stack.pop().?.f64)) ^ 0x8000000000000000) });
|
|
},
|
|
.f64_ceil => {
|
|
try self.stack.append(allocator, .{ .f64 = @ceil(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_floor => {
|
|
try self.stack.append(allocator, .{ .f64 = @floor(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_trunc => {
|
|
try self.stack.append(allocator, .{ .f64 = @trunc(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_nearest => {
|
|
try self.stack.append(allocator, .{ .f64 = @round(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_sqrt => {
|
|
try self.stack.append(allocator, .{ .f64 = @sqrt(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_add => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = a + b });
|
|
},
|
|
.f64_sub => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = b - a });
|
|
},
|
|
.f64_mul => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = a * b });
|
|
},
|
|
.f64_div => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = b / a });
|
|
},
|
|
.f64_min => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = @min(a, b) });
|
|
},
|
|
.f64_max => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = @max(a, b) });
|
|
},
|
|
// See f64_abs and f64_neg for explainations behind these magic values
|
|
.f64_copysign => {
|
|
const a = self.stack.pop().?.f64;
|
|
const b = self.stack.pop().?.f64;
|
|
try self.stack.append(allocator, .{ .f64 = @bitCast((@as(u64, @bitCast(b)) & 0x7FFFFFFFFFFFFFFF) | (@as(u64, @bitCast(a)) & 0x8000000000000000)) });
|
|
},
|
|
|
|
.i32_wrap_i64 => {
|
|
try self.stack.append(allocator, .{ .i32 = @truncate(self.stack.pop().?.i64) });
|
|
},
|
|
.i32_trunc_f32_s => {
|
|
try self.stack.append(allocator, .{ .i32 = @intFromFloat(self.stack.pop().?.f32) });
|
|
},
|
|
.i32_trunc_f32_u => {
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(@as(u32, @intFromFloat(self.stack.pop().?.f32))) });
|
|
},
|
|
.i32_trunc_f64_s => {
|
|
try self.stack.append(allocator, .{ .i32 = @intFromFloat(self.stack.pop().?.f64) });
|
|
},
|
|
.i32_trunc_f64_u => {
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(@as(u32, @intFromFloat(self.stack.pop().?.f64))) });
|
|
},
|
|
.i64_extend_i32_s => {
|
|
try self.stack.append(allocator, .{ .i64 = @as(i64, self.stack.pop().?.i32) });
|
|
},
|
|
.i64_extend_i32_u => {
|
|
try self.stack.append(allocator, .{ .i64 = @as(i64, @as(u32, @bitCast(self.stack.pop().?.i32))) });
|
|
},
|
|
.i64_trunc_f32_s => {
|
|
try self.stack.append(allocator, .{ .i64 = @intFromFloat(self.stack.pop().?.f32) });
|
|
},
|
|
.i64_trunc_f32_u => {
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(@as(u64, @intFromFloat(self.stack.pop().?.f32))) });
|
|
},
|
|
.i64_trunc_f64_s => {
|
|
try self.stack.append(allocator, .{ .i64 = @intFromFloat(self.stack.pop().?.f64) });
|
|
},
|
|
.i64_trunc_f64_u => {
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(@as(u64, @intFromFloat(self.stack.pop().?.f64))) });
|
|
},
|
|
.f32_convert_i32_s => {
|
|
try self.stack.append(allocator, .{ .f32 = @floatFromInt(self.stack.pop().?.i32) });
|
|
},
|
|
.f32_convert_i32_u => {
|
|
try self.stack.append(allocator, .{ .f32 = @floatFromInt(@as(u32, @bitCast(self.stack.pop().?.i32))) });
|
|
},
|
|
.f32_convert_i64_s => {
|
|
try self.stack.append(allocator, .{ .f32 = @floatFromInt(self.stack.pop().?.i64) });
|
|
},
|
|
.f32_convert_i64_u => {
|
|
try self.stack.append(allocator, .{ .f32 = @floatFromInt(@as(u64, @bitCast(self.stack.pop().?.i64))) });
|
|
},
|
|
.f32_demote_f64 => {
|
|
try self.stack.append(allocator, .{ .f32 = @floatCast(self.stack.pop().?.f64) });
|
|
},
|
|
.f64_convert_i32_s => {
|
|
try self.stack.append(allocator, .{ .f64 = @floatFromInt(self.stack.pop().?.i32) });
|
|
},
|
|
.f64_convert_i32_u => {
|
|
try self.stack.append(allocator, .{ .f64 = @floatFromInt(@as(u32, @bitCast(self.stack.pop().?.i32))) });
|
|
},
|
|
.f64_convert_i64_s => {
|
|
try self.stack.append(allocator, .{ .f64 = @floatFromInt(self.stack.pop().?.i64) });
|
|
},
|
|
.f64_convert_i64_u => {
|
|
try self.stack.append(allocator, .{ .f64 = @floatFromInt(@as(u64, @bitCast(self.stack.pop().?.i64))) });
|
|
},
|
|
.f64_promote_f32 => {
|
|
try self.stack.append(allocator, .{ .f64 = @floatCast(self.stack.pop().?.f32) });
|
|
},
|
|
.i32_reinterpret_f32 => {
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(self.stack.pop().?.f32) });
|
|
},
|
|
.i64_reinterpret_f64 => {
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(self.stack.pop().?.f64) });
|
|
},
|
|
.f32_reinterpret_i32 => {
|
|
try self.stack.append(allocator, .{ .f32 = @bitCast(self.stack.pop().?.i32) });
|
|
},
|
|
.f64_reinterpret_i64 => {
|
|
try self.stack.append(allocator, .{ .f64 = @bitCast(self.stack.pop().?.i64) });
|
|
},
|
|
|
|
.i32_extend8_s => {
|
|
const val = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @as(i32, @as(i8, @truncate(val))) });
|
|
},
|
|
.i32_extend16_s => {
|
|
const val = self.stack.pop().?.i32;
|
|
try self.stack.append(allocator, .{ .i32 = @as(i32, @as(i16, @truncate(val))) });
|
|
},
|
|
.i64_extend8_s => {
|
|
const val = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = @as(i64, @as(i8, @truncate(val))) });
|
|
},
|
|
.i64_extend16_s => {
|
|
const val = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = @as(i64, @as(i16, @truncate(val))) });
|
|
},
|
|
.i64_extend32_s => {
|
|
const val = self.stack.pop().?.i64;
|
|
try self.stack.append(allocator, .{ .i64 = @as(i64, @as(i32, @truncate(val))) });
|
|
},
|
|
|
|
.i32_trunc_sat_f32_s => {
|
|
try self.stack.append(allocator, .{ .i32 = @intFromFloat(self.stack.pop().?.f32) });
|
|
},
|
|
.i32_trunc_sat_f32_u => {
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(@as(u32, @intFromFloat(self.stack.pop().?.f32))) });
|
|
},
|
|
.i32_trunc_sat_f64_s => {
|
|
try self.stack.append(allocator, .{ .i32 = @intFromFloat(self.stack.pop().?.f64) });
|
|
},
|
|
.i32_trunc_sat_f64_u => {
|
|
try self.stack.append(allocator, .{ .i32 = @bitCast(@as(u32, @intFromFloat(self.stack.pop().?.f64))) });
|
|
},
|
|
.i64_trunc_sat_f32_s => {
|
|
try self.stack.append(allocator, .{ .i64 = @intFromFloat(self.stack.pop().?.f32) });
|
|
},
|
|
.i64_trunc_sat_f32_u => {
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(@as(u64, @intFromFloat(self.stack.pop().?.f32))) });
|
|
},
|
|
.i64_trunc_sat_f64_s => {
|
|
try self.stack.append(allocator, .{ .i64 = @intFromFloat(self.stack.pop().?.f64) });
|
|
},
|
|
.i64_trunc_sat_f64_u => {
|
|
try self.stack.append(allocator, .{ .i64 = @bitCast(@as(u64, @intFromFloat(self.stack.pop().?.f64))) });
|
|
},
|
|
|
|
.vecinst => @panic("UNIMPLEMENTED"),
|
|
}
|
|
frame.program_counter += 1;
|
|
}
|
|
}
|
|
|
|
// TODO: Do name resolution at parseTime
|
|
pub fn externalCall(self: *Runtime, allocator: Allocator, name: ExportFunction, parameters: []Value) !void {
|
|
switch (name) {
|
|
.init => {
|
|
if (self.module.exports.init) |func| {
|
|
try self.call(allocator, func, parameters);
|
|
} else {
|
|
std.debug.panic("Function init unavailable\n", .{});
|
|
}
|
|
},
|
|
.deinit => {
|
|
if (self.module.exports.deinit) |func| {
|
|
try self.call(allocator, func, parameters);
|
|
} else {
|
|
std.debug.panic("Function deinit unavailable\n", .{});
|
|
}
|
|
},
|
|
else => {
|
|
std.debug.panic("Function {any} not handled\n", .{name});
|
|
},
|
|
}
|
|
}
|
|
|
|
fn reverseSlice(slice: []Value) void {
|
|
var i: usize = 0;
|
|
var j = slice.len - 1;
|
|
while (i < j) {
|
|
std.mem.swap(Value, &slice[i], &slice[j]);
|
|
i += 1;
|
|
j -= 1;
|
|
}
|
|
}
|
|
|
|
pub fn call(self: *Runtime, allocator: Allocator, function: usize, parameters: []Value) AllocationError!void {
|
|
const f = self.module.functions[function];
|
|
if (parameters.len > 1){
|
|
reverseSlice(parameters);
|
|
}
|
|
switch (f.typ) {
|
|
.internal => {
|
|
// std.debug.print("Calling {d}\n", .{function});
|
|
const ir: IR = f.typ.internal.ir;
|
|
const function_type = f.func_type;
|
|
var frame = CallFrame{
|
|
.code = ir,
|
|
.program_counter = 0x0,
|
|
.locals = try allocator.alloc(Value, f.typ.internal.locals.len + function_type.parameters.len),
|
|
};
|
|
|
|
@memcpy(frame.locals[0..parameters.len], parameters);
|
|
|
|
for (f.typ.internal.locals, function_type.parameters.len..) |local, i| {
|
|
switch (local) {
|
|
.val => |v| switch (v) {
|
|
.i32 => {
|
|
frame.locals[i] = .{ .i32 = 0 };
|
|
},
|
|
.i64 => {
|
|
frame.locals[i] = .{ .i64 = 0 };
|
|
},
|
|
.f32 => {
|
|
frame.locals[i] = .{ .f32 = 0 };
|
|
},
|
|
.f64 => {
|
|
frame.locals[i] = .{ .f64 = 0 };
|
|
},
|
|
else => unreachable,
|
|
},
|
|
.ref => unreachable,
|
|
}
|
|
}
|
|
|
|
try self.executeFrame(allocator, &frame);
|
|
// std.debug.print("Returning from {d}\n", .{function});
|
|
|
|
allocator.free(frame.locals);
|
|
},
|
|
.external => {
|
|
const func = self.externalFuncs.get(@intCast(function));
|
|
if (func == null){
|
|
std.debug.panic("ERROR: WASM tried calling out of bounds external function\n", .{});
|
|
}
|
|
const ret = func.?.func(self, parameters);
|
|
if (ret != null){
|
|
try self.stack.append(allocator, ret.?);
|
|
}
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
pub fn handleGlobalInit(allocator: Allocator, ir: IR) !Value {
|
|
var instruction_pointer: usize = 0;
|
|
var stack = try std.ArrayList(Value).initCapacity(allocator, 10);
|
|
defer stack.deinit(allocator);
|
|
while (instruction_pointer < ir.opcodes.len) {
|
|
const opcode: IR.Opcode = ir.opcodes[instruction_pointer];
|
|
const index = ir.indices[instruction_pointer];
|
|
switch (opcode) {
|
|
.i32_const => try stack.append(allocator, Value{ .i32 = index.i32 }),
|
|
else => {
|
|
std.debug.panic("TODO: Handle opcode {any}\n", .{opcode});
|
|
},
|
|
}
|
|
instruction_pointer += 1;
|
|
}
|
|
if (stack.items.len != 1) {
|
|
std.debug.panic("Improper amount of variables at end\n", .{});
|
|
}
|
|
return stack.pop().?;
|
|
}
|